Name: Conrado Guerrero Quiles Institute: University of Manchester

A pan-cancer characterisation of the hypoxic ECM identifies a gene signature predictive of radiotherapy benefit

Background: Extracellular matrix and hypoxia

Bigos et al. Front Oncol 2024

Hypothesis and aims

Hypothesis

• Hypoxia alters the ECM composition in cancer, influencing radioresistance

Aims

- To characterise the hypoxic ECM composition in cancer
- To identify a signature associated with radiotherapy benefit

Characterising hypoxia signalling: meta-analysis

- **Hypoxia-scores:** Retrospectively validated cancer-specific hypoxia signatures
- Differential gene expression (DEGs): limma analysis for each cohort independently
- Random-effects model (REM): Integrate differential gene expression data
- Significance: FDR<0.05, fold change >1 or <-1, frequency > 30%

Cancer type	Total patients	Total cohorts
Bladder	1,257	8
Breast	3,766	12
Colorectal	1,937	14
Glioblastoma	3,064	18
Liver	1,698	13
Head & neck	1,492	15
Lung	1,446	7
Pancreas	1,430	13
Prostate	4,587	21
Cervix	568	8
All	21,	129

Pan cancer Head & neck

Glioblastoma Bladder

Breast

Pancreas

Colorectal

Prostate

Liver

Luna

500

-500

-1000

-1500

ECM genes

No ECM genes

0

Cervix

Characterising hypoxia signalling: meta-analysis

Hypoxia induces pan-cancer gene expression changes

>17% of hypoxia-regulated genes are extracellular matrix (ECM)

Characterising hypoxia |||||||| signalling: meta-analysis

Hypoxia regulates ECM pathways at pan-cancer level

Hypoxia changes in ECM gene expression are prevalent

Identifying suitable models

Identifying models (in vitro)

In vitro models recapitulate ECM hypoxia alterations found in the meta-analysis

Identifying models (FFPE)

Hypoxic ECMs are different in tumour and stromal areas

Signature validation: meta-analysis

- Using available clinical and transcriptomic data from the meta-analysis cohorts
- Patients were tertile-stratified based on signature expression levels
- Signature evaluated with Cox multivariate analysis

Prognostic (medium or high scores do worse): Glioblastoma (n=1,011; p=0.0000054), Bladder (n=1,102; p=0.0027) Lung (n=764; p=0.0029) Pancreatic (n=271; p=0.00035) Prostate: (n=689; p=0.035)

Mechanistic evaluation

٠

Mechanistic evaluation

Hypoxic ECMs promote adhesion and impair migration, effect enhanced by irradiation

Mechanistic validation: ECM fibres colocalisation

FN

Conclusions

- Hypoxia induces prevalent pan-cancer alterations in the ECM
- Those alterations linked to MET-mediated cell migration and immune signalling
- A hypoxic-ECM signature is both prognostic and predictive of radiotherapy benefit
- High-score patients benefit from radiotherapy and had reduced metastatic events
- Highly hypoxic ECMs (0.2% O2) have fewer collagen fibres and reduce cell migration (effect enhanced by radiotherapy)
- Radiation impairs cell/ECM interactions, providing context for the signature's predictive capacity

Acknowledgments

- Translational Radiobiology Group
 - Catharine West
 - Ananya Choudhury
 - Julia Gonzalez Abalos
 - Joe Irlam
 - Elisabeth More
 - Vanesa Biolatti
 - Sapna Lung
 - Rachel Reed
 - Vicky Smith
 - Rachel Reed
 - Tim Smith
 - Rekaya Shabir
 - Mark Reardon
 - Taha Lodhi
- Humphries's Lab
 - Martin Humphries
 - Jonathan Humphries (MMU)
- The BC2001 investigators

MANCHESTER CANCER REGEARCH

wellcome

MANCHESTER 1824

The University of Manchester

NHS

