

Don't count your hedgehogs before they've Patched: Hedgehog signalling in tumorigenesis

Abstract

Hedgehog signalling is involved in embryonic development and cell proliferation. Unsurprisingly, it's dysregulation has been implicated in cancer. This investigation aimed to elucidate functions of non-canonical hedgehog signalling through examining the effects of **PTCH-1 truncation** in colorectal cancer cells, specifically on long non-coding RNAs (IncRNA). RNA sequencing identified 26 IncRNAs, many previously implicated in cancer. The effects on the predicted IncRNA targets however indicated an anti-cancer effect. Characterising hedgehog signalling is key for understanding how it can contribute to tumorigenesis.

Introduction

- Hedgehog (Hh) signalling is a paracrine signal transduction pathway in embryonic development, remaining active in progenitor cells to regulate proliferation^[1].
- Canonical Hh signalling refers to initiation of GLI transcription through Hh mediated PTCH inhibition and Smo activation (figure 1).
- Non-canonical Hh signalling uses only some components of the canonical pathway: • Type 1 routes function through PTCH independently of Smo.
 - Type 2 routes require Smo but not the GLI transcription factors^[3].
- Type 1 pathways regulate apoptosis and cell cycle progression via actions of the PTCH-1 C-terminal domain (CTD)^[3].
- Using CRISPR-Cas9 technology, the PTCH-1 CTD was truncated, inhibiting all actions of the CTD in colorectal adenocarcinoma cells.
- 2 clones, 9 and 15, were analysed through RNA sequencing.
- The aim was to identify roles of noncanonical Hh signalling through examining the effects of the PTCH-1 truncation on the global transcriptome, specifically focussing on IncRNAs.

Figure 1: Canonical Hedgehog signalling^[2]

Methods

- Statistical analysis was completed on the RNA sequencing data. LncRNAs identified as differentially expressed (DE) in both clones 9 and 15 were selected.
- A literature search for data on the DE lncRNAs was conducted to **identify experimentally** verified roles and targets.
- Gene ontology enrichment was completed using the identified targets.
- Expression levels of the predicted targets were checked against the RNA sequencing data.

Name: Katie Beirns

- Fewer IncRNAs were found to be differentially expressed in clone15, likely due to better accuracy (figure 2a/b).
- The 26 differentially expressed lncRNAs identified were similarly affected in both clones (figure 3).
- The altered expression of the IncRNAs coincided well with research of other cancers, indicating a pro-tumorigenic effect.
- The predicted IncRNA targets however, determined through research literature, showed contradictory results.
- Most of the targets were not significantly affected at all or affected in an alternative manner than hypothesised i.e. upregulated when predicted to be downregulated (figure 4a/b).

Discussion & Conclusions

- The DE IncRNAs indicated the PTCH-1 truncation produced a pro tumorigenic effect, however the expression of the predicted IncRN targets strongly suggested the predictions were inaccurate.
- The IncRNA roles/ target predictions were based on published research, which was often limited to only 1-2 cell types.
- The IncRNAs roles evidently vary with cell type and context.
- · In summary, the precise IncRNA roles in colorectal cells nee defining to reliably determine PTCH-1 truncation effects.
- · Combining this data with the differentially expressed coding RN transcripts will assist in clarifying the 'bigger picture' effects of PTCH truncation, and thus the roles of the PTCH-1 CTD.

Supervisor: Dr N.A. Riobo-Del Galdo

	References &	
ro- NA	acknowledgements	
ed	 References 1.Qi, X. and Li, X. 2020. Mechanistic Insights into the Generation and Transduction of Hedgehog Signaling. <i>Trends in Biochemical Sciences</i>. 45(5), pp.397-410. 2.BioRender.com. 2021. <i>Hedgehog Signalling Pathway.</i> [Online]. [Accessed 21 January 2021]. Available from: 	
ed	 <u>https://app.biorender.com/biorender-templates</u> 3.Robbins, D.J., Fei, D.L. and Riobo, N.A. 2012. The Hedgehog Signal Transduction Network. <i>Science Signaling</i>. 5(246), pp.re6-re6. 	
VA -1	Acknowledgments Many thanks to Dr Riobo-Del Galdo for allowing me to take part in her research and for supporting me through out the project.	
	Poster No. XX	