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INTRODUCTION METHODS
* Hypoxia is a feature present in most solid tumours, associated poor prognosis and known to promote cancer metastasis. Bladder cancer is a common || ¢ Cell culture: UMUCS3, 182, RT4 and T24 cell lines were cultured for 7 days in 21% (normoxia), or 0.1-0.2% (hypoxia) O, in a Don Whitley Hypoxystation don whitley
disease (>500,000 cases annually) in which hypoxia (low oxygen levels) is heavily prevalent. Up to 70% of patients show some level of expression of || * Irradiation: Cells were irradiated (2 — 8 Gy) with X-rays using a Xtrahl irradiation system. @i&fﬂ}oﬁtﬁ
classic hypoxia markers (n = 64)1-2. * Proteomics: After decellularization, ECM was collected and analysed through mass spectrometry (MS).
* Hypoxia induces cancer metastasis through promoting extracellular matrix remodelling (ECM), acquiring a pro-cancerous fibrotic phenotype. The || * ChipSeq: Gene promotor regions bound to HIF1A/HIF1B were immunoprecipitated and sequenced.
nypoxic ECM plays a key role in cancer metastasis, providing a scaffold that gives both signalling and structural support for cancer cell migration3. * Migration: Cells were seeded onto normoxic or hypoxic ECM, scratched, and migration capacity measured through live microscopy up to 48h.
» Radiotherapy, standard-of-care treatment in bladder cancer, has synergies with the ECM as it affects cell-ECM interactions through focal adhesions, || « Attachment: Cells were allowed to attach onto normoxic or hypoxic ECM up to 2h, non-adherent cells removed and % of attached cells estimated by [
activating FAK and integrin signalling, which is critical for the induction of epithelial mesenchymal transition?. absorbance.
Aim: To perform an omics comprehensive study of hypoxia effects in cancer ECM remodelling, its regulatory mechanisms, effects in cell adhesion and | « Immunofluorescence: Cells were fixated and antibody-stained for collagen (COL) 1/5 and fibronectin (FN). Nuclear and cytoplasmatic staining was
migration, and its synergies with irradiation. performed with DAPI and phalloidin, respectively.
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