



### *Fusobacterium nucleatum* subspecies differ in biofilm forming ability *in vitro*

Maria Muchova Anaerobe 2022, Seattle, WA

Muchova M, Balacco DL, Grant MM, Chapple ILC, Kuehne SA and Hirschfeld J (2022) *Fusobacterium nucleatum* Subspecies Differ in Biofilm Forming Ability *in vitro*. Front. Oral. Health 3:853618. doi: 10.3389/froh.2022.853618

## Fusobacterium nucleatum

Commensal Gram-negative oral anaerobe<sup>1</sup>

Key bridging species in oral biofilms<sup>2</sup>

Opportunistic pathogen<sup>3</sup>

Adhesins mediating coaggregation and biofilm formation: RadD and Aid1, Fap2, FomA, CmpA<sup>4</sup>, FadA<sup>5</sup>, YadA-like adhesin<sup>6</sup>

 $\bigcirc 0$ 

1. Han. Curr Opin Microbiol. 2015. 23, 141. | 2. Jung et al. J Oral Microbiol, 2017. 9(1), 1320193 | 3. Brennan and Garrett. Nat Rev Microbiol. 2019, 17,156. | 4. Diaz et al. J Dent Res, 2020. 99(1), 18-25 | 5. Meng et al. EMBO Rep, 2021. 22(7), e52891 | 6. Umaña et al. J Bacteriol. 2019, 201, e00273–19.

## Fusobacterium nucleatum subspecies





## Differences among subspecies

- Involvement in health and disease
  - FNF and FNV isolated from healthy sites<sup>1,7</sup>
  - FNA and FNN from diseased sites<sup>7-9</sup>
  - FNP associated with both<sup>8</sup>
- Subspecies-specific host response modulation in HL-60 cells<sup>10</sup>
- Differential incorporation of subspecies into multispecies biofilm models<sup>11</sup>



1. Han. Curr Opin Microbiol. 2015. 23, 141. | 7. Gharbia et al. Oral Microbiol Immunol. 1990. 5(6), 324-7. | 8. Feres et al. Int Dent J. 2018. 68(1), 39-46. | 9. Gmür et al. Syst Appl Microbiol. 2006. 29(2), 120-30. | 10. Kurgan et al., J Periodontol. 2017. 88(4), 380-9. | 11. Thurnheer et al. Front Microbiol. 2019. 10, 1716.

# Is there a difference in single-subspecies biofilm formation?

...but F. nucleatum does not form biofilms on its own in vivo...

#### That is true, but...

- Absence of binding partners allows better understanding of biofilm-related immunogenic and pathogenic properties and expression of virulence factors
- Using a simplified single-subspecies biofilm model which can be repeated by other researchers



## Methodology



In vitro







COLLEGE OF MEDICAL AND DENTAL SCIENCES

Created with BioRender.com

## Biofilm thickness and stability varies among *F. nucleatum* subspecies and on different surfaces



**Figure 1. Single-subspecies biofilms quantified using CV. A:** Quantification on glass coverslips with or without (control) surface coatings. One-way ANOVA was performed followed by Dunnett's post hoc test for within subspecies differences between control (uncoated glass) and test samples (\*=p<0.05; \*\*=p<0.01; \*\*\*=p<0.001), n=3.

## Biofilm thickness and stability varies among *F. nucleatum* subspecies and on different surfaces



Figure 1. Single-subspecies biofilms quantified using CV. B: Quantification on Thermanox coverslips with or without (control) surface coatings. One-way ANOVA was performed followed by Dunnett's post hoc test for within subspecies differences between control (uncoated Thermanox) and test samples (\*=p<0.05; \*\*=p<0.01; \*\*\*=p<0.001), n=3.

 $\bigcirc 0$ 

#### Biofilm architecture differs among *F. nucleatum* subspecies

**FNA** 

FNF



Figure 3. F. nucleatum biofilms grown on poly-L-lysine coated Thermanox coverslips. A: 1000X magnification, scale bar 20µm. B: 5000X magnification, scale bar Biofilms 5µm. from two independent experiments grown in duplicates were imaged and representative micrographs are shown.

### Biofilm architecture differs among *F. nucleatum* subspecies

FNN25

**FNP** 



Figure 3. F. nucleatum biofilms grown on poly-L-lysine coated Thermanox coverslips. A: 1000X magnification, scale bar 20µm. B: 5000X magnification, scale bar Biofilms 5µm. from two independent experiments grown in duplicates were imaged and representative micrographs are shown.

### Why does FNP differ from other subspecies?



**Bioinformatics** 



# Conservation of adhesion protein orthologues varies among *F. nucleatum* subspecies



subspecies. Conservation of adhesion proteins in *F. nucleatum* ATCC strains.

# Conservation of adhesion protein orthologues varies among *F. nucleatum* subspecies





COLLEGE OF MEDICAL AND DENTAL SCIENCES **Figure 4. Bioinformatic analysis of adhesion proteins in** *F. nucleatum* **subspecies.** CmpA and Fap2 phylogenetic tree with black circles representing bootstrap values > 95. Autotransporter domains are coloured in blue, pectin lyase-like domains in pink.

### Conclusions

- In our experimental conditions, *F. nucleatum* subspecies differ in biofilm thickness and stability
- FNP does not form stable biofilms
- Formation of biofilms is substrate-specific
- Architecture of biofilms differs among the subspecies
- Adhesion proteins have differential conservation in silico

 $\bigcirc 0$ 



Supervisors: Dr Josefine Hirschfeld Dr Sarah Kuehne Dr Melissa Grant Prof Iain Chapple **Collaborators:** Dr Dario Leonardo Balacco Dr Daniel Slade Dr Lauter Pelepenko



 $\bigcirc 0$